

Behold, a table concerning the content of this presentation.

- The Beginning: Bayes' Theorem
- Pierre-Simon Laplace
- Beyond the Mystery: Definition and making sense of the Theorem
- Even Less Mystery: Derivation of Bayes' Theorem from conditional probabilities.
- The Great Struggle: Bayesians vs. frequentists

The Baggage: Applications of Bayes' Theorem Even More: Examples

The Beginning: Reverend Thomas Bayes (1702-1761)
The Reverend devised Bayes Theorem in his published work An Essay towards solving a Problem in the Doctrine of Chances.

- Bayes'Theorem studies the correlation of events rather than their order.
- The Reverend focused much time on computing the distribution for a parameter of a binomial distribution.

Pierre-Simon Laplace (1749-1827)

One of the founding fathers of Bayesian statistical analysis.
Introduced a general version of Bayes' Theorem.

He the applied his methods to problems in celestial mechanics, medical statistics, and reliability.

Beyond the Mystery: Bayes' Theorem

- Bayes' Theorem is a method of statistical inference, it is used to infer the probability of a hypothesis based on the events and observations.

The model is considered to be a hidden variable with a prior distribution.

- The theorem relates conditional probabilities.
- If two events are denoted by A and B, then the conditional probability of A given that B occurs is equal to $P(A \mid B)$
The two conditional probabilities are related through Bayes' Theorem, $P(A \mid B)^{*} P(B)=P(B \mid A)^{*} P(A)$

Derivation of Theorem from Conditional Probabilities

$P(A \mid B)=P(A \cap B) / P(B)$ and $P(B \mid A)=P(A \cap B) / P(A)$
$P(A \mid B) * P(B)=P(B \mid A) * P(A)=P(A \cap B)$
Just set the equation up and divide by $P(B)$
$P(A \mid B)=P(B \mid A)^{*} P(A) / P(B)<-$ Bayes $^{\prime}$
Theorem

Some Examples of its use:

Conditional probabilities

There are two giant top hats. Hat \#1 contains 20 plastic pandas and 30 model anteaters, \#2 contains 40 plastic pandas and 10 model anteaters.

- A hat and item are chosen at random, so happens a plastic panda is snagged out of one of the giant hats.
- Find the probability that it was snagged from hat \#1, given a plastic panda is chosen.
$A=$ hat \#1 $\quad P(A)=0.5$
$B=p$. panda
$P(B)=0.6$
$P(B \mid A)=0.4$

$$
P(A \mid B)=\left(P(B \mid A)^{*} P(A)\right) /(P(B))=\left(0.4^{*} 0.5\right) /(0.6)=0.333
$$

Another example:

False positive in a medical test.
$A=$ having the disease $P(A)=0.05$
$B=$ positive test $\quad A c=$ not having the disease

- If one has the disease, they test positive with a $P(B \mid A)=0.95$
- If one does not have the disease, they test positive with a $P(B \mid A C)=0.01$
$P(A \mid B)=\left(P(B \mid A)^{*} P(A)\right) /\left(P(B \mid A)^{*} P(A)+P(B \mid A C)^{*} P(A C)\right)$
$=(0,95 * 0.05) /(0.95 * 0.05+0.01 * 0.99)$
$=0.8275=\mathrm{P}(\mathrm{A} \mid \mathrm{B})=$ probability that a positive result will not be a false positive.

